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We show that an arbitrary Anosov Gaussian thermostat close to equilibrium has positive
entropy poduction unless the external field E has a global potential. The configuration
space is allowed to have any dimension and magnetic forces are also allowed. We also
show the following non-perturbative result. Suppose a Gaussian thermostat satisfies

Kw(σ ) + 1

4
|Eσ |2 < 0

for every 2-plane σ , where Kw is the sectional curvature of the associated Weyl connec-
tion and Eσ is the orthogonal projection of E onto σ . Then the entropy production of
any SRB measure is positive unless E has a global potential. A related non-perturbative
result is also obtained for certain generalized thermostats on surfaces.
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1. INTRODUCTION

In this paper we consider the dynamical system given by the motion of a particle
of unit mass on a closed Riemannian n-manifold M subject to the action of an
external field E . We also enforce as a constraint that the kinetic energy is a constant
of motion, so the resulting equation is:

Dγ̇

dt
= E(γ ) − 〈E(γ ), γ̇ 〉

|γ̇ |2 γ̇ , (1)

where D denotes covariant derivative and γ : R → M is a curve in M . This
equation defines a flow φ on the unit sphere bundle SM of M which reduces to
the geodesic flow (free motion) when E = 0. The kinetic energy is held fixed by
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Gauss’ principle of least constraint and thus the system defined by (1) is referred
to as Gaussian thermostat. Thermostats have become quite popular as models
in nonequilibrium statistical mechanics. (5,11,14,18,31) Like geodesic flows, they are
reversible, that is, the flip SM � (x, v) �→ (x,−v) ∈ SM conjugates φt with φ−t .

Let GE be the vector field in SM that generates φ. An easy calculation (cf.
Ref. 36) shows that the divergence div GE of GE with respect to the canonical
volume form � of SM is given by

div GE = −(n − 1) θ, (2)

where θ is the 1-form dual to E , i.e., θx (v) = 〈E(x), v〉 and we regard θ also as a
function θ : TM → R. We see right away that φ does not preserve the Liouville
measure (i.e. �) unless E = 0. But in principle, the flow may preserve other
smooth measures. In fact, it is an exercise to check that φ preserves a smooth
volume form iff θ is a coboundary, that is, iff there exists a smooth function
u : SM → R which solves the cohomological equation

GE (u) = θ. (3)

For example, suppose θ is an exact 1-form, i.e., the external field E has a global
potential U and write E = −∇U . Then GE (−U ◦ π ) = θ , where π : SM → M
is footpoint projection: π (x, v) = x . However, in general, one does not expect to
have smooth solutions of (3). For example, if θ is a closed, non-exact 1-form and
every homology class in H1(SM, Z) contains a closed orbit of φ, then there is no
global solution to (3).3

In the presence of hyperbolicity, there is a close relationship between (3) and
the entropy production of an SRB state ρ which we now describe. We will say that
a φ-invariant measure ρ is an SRB measure (or state) if ρ is ergodic and

hρ(φ) =
∑

positive Lyapunov exponents,

where hρ(φ) is the measure theoretic entropy of φ with respect to ρ. The entropy
production of the state ρ is given by (cf. Ref. 29)

eφ(ρ) := −
∫

div GE dρ = −
∑

Lyapunov exponents.

D. Ruelle (29) observed that eφ(ρ) ≥ 0 with equality iff

hρ(φ) =
∑

positive Lyapunov exponents

= −
∑

negative Lyapunov exponents. (4)

3 Note that π∗ : H1(M, R) → H1(SM, R) is an isomorphism for M different from the 2-torus, thus θ

is exact iff π∗θ is exact.
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Suppose now that φ is an Axiom A flow (we recall the definition in Sec. 3)
and let ρ be an SRB state. We will see in Lemma 3.1 that if eφ(ρ) = 0, then φ is
in fact a transitive Anosov flow and (3) must hold. Conversely if (3) holds, then
φ preserves a smooth measure and φ is a transitive Anosov flow. Hence ρ must
be the unique invariant smooth measure and consequently (4) holds which in turn
implies eφ(ρ) = 0.

Thus, for Axiom A thermostats, eφ(ρ) = 0 iff there exists a smooth solution
of (3).

In Sec. 5 we will explain why a transitive Anosov thermostat is always
homologically full, i.e. every homology class in H1(SM, Z) contains a closed orbit.
Thus, if θ is closed, but not exact (e.g. electromotive forces), then eρ(φ) > 0 for
any Axiom A thermostat. This was proved by M. Wojtkowski [Ref. 36, Proposition
3.1] assuming that φ is an Anosov flow topologically conjugate to a geodesic flow,
and by F. Bonetto, G. Gentile and V. Mastropietro (1) for the case of a metric of
constant negative curvature and θ a small harmonic 1-form.

The natural question now is: what happens for an arbitrary field E which
does not necessarily have local potentials? In two degrees of freedom the problem
was solved completely in Ref. 6: an Anosov Gaussian thermostat has zero entropy
production iff E has a global potential. The aim of the present paper is to provide
similar results for n degrees of freedom.

We note that the assumption that φ is uniformly hyperbolic is known in the
literature on nonequilibrium statistical mechanics as the chaotic hypothesis of G.
Gallavotti and E.G.D. Cohen: for systems out of equilibrium, physically correct
macroscopic results will be obtained by assuming that the microscopic dynamics
is uniformly hyperbolic. A system with eφ(ρ) > 0 is sometimes referred to as
dissipative. Dissipative Gaussian thermostats provide a large class of examples
to which one can apply the Fluctuation Theorem of Gallavotti and Cohen(10,12,13)

(extended to Anosov flows by G. Gentile (15)) and this theorem is perhaps one of
the main motivations for determining precisely which thermostats are dissipative.

In our first result we will allow magnetic forces. This involves the addition of
a Lorentz force F to the right hand side of (1). For each x ∈ M , Fx : Tx M → Tx M
is an antisymmetric linear map such that the 2-form 〈Fx (v), w〉 is closed. We
will indicate this thermostat by φE,F. Note that φ0,F is a magnetic flow and hence
it preserves the volume form �. Suppose φ0,F is Anosov and E is an arbitrary
external field. Then for ε sufficiently small and s ∈ (−ε, ε), the flow φs E,F is also
a transitive Anosov flow. Moreover, the map (−ε, ε) � s �→ e(s) := eφs E,F (ρs) is
smooth. (3,30,32) It is immediate that e′(0) = 0 and in Sec. 2 we will show that
e′′(0) ≥ 0 with equality iff E has a global potential. Thus we obtain:

Theorem A. An Anosov Gaussian thermostat close to equilibrium has zero
entropy production if and only if the external field E has a global potential.
Magnetic forces are allowed at equilibrium.
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We now explain the non-perturbative results (which do not include magnetic
forces). Given a 2-plane σ ⊂ Tx M , set:

k(σ ) := K (σ ) − divσ E − |E |2 + 5

4
|Eσ |2, (5)

where K (σ ) is the sectional curvature of the 2-plane σ , Eσ is the orthogonal
projection of E onto σ and divσ E := 〈∇ξ E, ξ 〉 + 〈∇η E, η〉 for any orthonormal
basis {ξ, η} of σ . The expression

Kw(σ ) := K (σ ) − divσ E − |E |2 + |Eσ |2,
is precisely the sectional curvature of the Weyl connection: (37)

∇w
X Y = ∇X Y + 〈X, E〉 Y + 〈Y, E〉 X − 〈X, Y 〉 E .

Hence

k(σ ) = Kw(σ ) + 1

4
|Eσ |2.

Theorem B. Let φ be a Gaussian thermostat with k < 0 and let ρ be an SRB
measure. Then eρ(φ) = 0 if and only if the external field E has a global potential.

Like in Ref. 6 this non-perturbative result will be established by using Pestov
type identities as in Refs. 4,8 for geodesic flows. A closely related result about the
cohomological equation GE (u) = ϑ , where ϑ is an arbitrary 1-form is presented
in Theorem 4.3.

We remark that in [Ref. 37, Theorem 5.1], M. Wojtkowski has shown that
for n ≥ 3, the condition k < 0 implies that φ is Anosov and for n = 2 it suffices
to assume that Kw < 0. (In general, Kw < 0 only ensures that the flow has a
dominated splitting).

Our last non-perturbative result concerns a more general class of thermostats,
but it will be only for n = 2. In principle, nothing impedes us from considering
external fields acting on the particle which are also velocity dependent. The way
to formalize this is to say that our external field is a semibasic vector field E(x, v),
that is, a smooth map T M � (x, v) �→ E(x, v) ∈ T M such that E(x, v) ∈ Tx M
for all (x, v) ∈ T M . As before the equation

Dγ̇

dt
= E(γ, γ̇ ) − 〈E(γ, γ̇ ), γ̇ 〉

|γ̇ |2 γ̇ .

defines a flow φ on the unit sphere bundle SM . These generalized thermostats are
reversible as long as E(x, v) = E(x,−v).

Suppose now that M is a closed oriented surface. Set λ(x, v) := 〈E(x, v), iv〉,
where i indicates rotation by π/2 according to the orientation of the surface. The
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evolution of the thermostat on SM can now be written as

Dγ̇

dt
= λ(γ, γ̇ ) i γ̇ . (6)

If λ does not depend on v, then φ is the magnetic flow associated with the
Lorentz force Fx (v) = λ(x)iv. If λ depends linearly on v, we obtain the Gaussian
thermostat (1).

If we fix a Riemannian metric on M , its conformal class determines a com-
plex structure. Given a positive integer k, let Hk denote the space of holomorphic
sections of the k-th power of the canonical line bundle. By the Riemann–Roch
theorem this space has complex dimension (2k − 1)(g − 1) for k ≥ 2 and com-
plex dimension g for k = 1, where g is the genus of M . (For k = 1 we get the
holomorphic 1-forms and for k = 2 the holomorphic quadratic differentials.) Note
that the elements in Hk can be regarded as functions on SM .4

Recall that π : SM → M is a principal S1-fibration and we let V be the
infinitesimal generator of the action of S1. If G denotes the vector field that
generates the geodesic flow, the horizontal vector field H is given by the Lie
bracket H = [V, G].

Theorem C. Let M be a closed oriented surface and consider an Anosov gen-
eralized thermostat (6) determined by λ = �(q), where q ∈ Hk . Suppose

K − H (λ) + λ2[(k + 1)2/(2k + 1)] ≤ 0,

where K is the Gaussian curvature of M. Then φ has zero entropy production if
and only if λ = 0.

When K = −1, k = 1, and λ is sufficiently small, the theorem is proved
in Ref. 1 using the same perturbative methods as we will use for the proof of
Theorem A. Note that for k odd the flow φ is reversible, so Theorem C provides a
large class of new examples to which the Fluctuation Theorem of Gallavotti and
Cohen applies.

2. DERIVATIVES OF ENTROPY PRODUCTION

2.1. The Variance

Let φ be a transitive Anosov flow on a closed manifold X . We will assume
that φ is weak-mixing, i.e., the equation F ◦ φt = eiat F , a > 0, has no continuous
solutions.

4 Sections of the k-th power of the canonical line bundle can be regarded as functions on SM which
transform according to the rule f (x, eiϕv) = eikϕ f (x, v).
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Let µ be a Gibbs state associated with some Hölder continuous potential.
Given a Hölder continuous function F : X → R, the variance of F with respect
to µ is defined as:

Varµ(F) := lim
T →∞

1

T

∫

X

(∫ T

0
(F ◦ φt − F) dt

)2

dµ,

where

F :=
∫

X
F dµ.

This limit exists and it appears in the central limit theorem for hyperbolic flows. (27)

There are other equivalent ways of expressing the variance. Let

ρF (t) :=
∫

X
(F ◦ φt · F − F

2
) dµ

be the auto-correlation function of F . Then the variance can also be expressed as
(cf. Ref. 26, Sec. 4):

Varµ(F) =
∫ ∞

−∞
ρF (t) dt = 2

∫ ∞

0
ρF (t) dt.

In fact the Fourier transform of ρF

ρ̂+
F (w) :=

∫ ∞

0
eiwtρF (t) dt

defined as a distribution, has a meromorphic extension to a strip |�(w)| ≤ ε with
no pole at w = 0. (28,25) The value at w = 0 is precisely Varµ(F)/2.

2.2. Proof of Theorem A

We first recall the setting described in the introduction. Consider a closed
Riemannian manifold and F a Lorentz force. Suppose φ0,F is Anosov and E is an
arbitrary external field. Then, by structural stability, for ε sufficiently small and
s ∈ (−ε, ε), the flow φs E,F is also a transitive (and weak-mixing) Anosov flow.

Consider the map

(−ε, ε) � s �→ e(s) := eφs E,F (ρs).

It follows from the results of G. Contreras (3) or Ruelle (30,32) that this map is
smooth. Indeed since div Gs E,F = −(n − 1)s θ , we have

e(s) = (n − 1)s
∫

SM
θ dρs
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and the results in Refs. 30,32 assert that s �→ ∫
SM θ dρs is smooth. Thus

e′(0) = (n − 1)
∫

SM
θ dµ,

e′′(0) = 2(n − 1)
d

ds

∣∣∣∣
s=0

∫

SM
θ dρs .

Here µ := ρ0 is the Liouville measure of SM . We see right away that e′(0) = 0
since

∫

SM
θ dµ = 0

because θx (v) = −θx (−v). The derivative

d

ds

∣∣∣∣
s=0

∫

SM
θ dρs

can be computed from the results in Refs. 30,32. Given a smooth function F :
SM → R, the derivative

d

ds

∣∣∣∣
s=0

∫

SM
F dρs

is the limit as ω → 0 with �(w) > 0 of
∫ ∞

0
eiwt

∫

SM
d(F ◦ φt )(x,v)(Y (x, v)) dµ(x, v)

= −
∫ ∞

0
eiwt

∫

SM
div Y (x, v) F(φt (x, v)) dµ(x, v)

where Y is such that Gs E,F = G0,F + s Y . Since div (Gs E,F − G0,F) = −s (n − 1)θ
we see that

e′′(0) = 2(n − 1)2 lim
w→0

∫ ∞

0
eiwt

∫

SM
θx (v) θ (φt (x, v)) dµ(x, v).

As pointed out before

ω �→
∫ ∞

0
eiwt

∫

SM
θx (v) θ (φt (x, v)) dµ(x, v)

extends to a holomorphic function near w = 0. We can now identify

2 lim
w→0

∫ ∞

0
eiwt

∫

SM
θx (v) θ (φt (x, v)) dµ(x, v)

with the variance of the function θ with respect to the Liouville measure µ. Thus

e′′(0) = (n − 1)2 Varµ(θ ).
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The variance has the wonderful property that Varµ(F) ≥ 0 with equality iff F is
a coboundary [Ref. 26, Sec. 4]. Thus we have shown that e′(0) = 0 and e′′(0) ≥ 0
with equality iff there exists a smooth solution u to the cohomological equation

G0,F(u) = θ. (7)

But the results in [Ref. 7, Theorem B] give a complete understanding of the
cohomological equation for Anosov magnetic flows. Indeed, there is a solution of
(7) iff θ is an exact form. For geodesic flows (i.e. F = 0) this result is proved in
Ref. 8.

Thus, unless E has a global potential, e′′(0) > 0 and therefore e(s) is strictly
positive for s �= 0 near zero. This shows Theorem A.

2.3. Some Explicit Calculations of Varµ(θ )

Suppose M is a compact locally symmetric space of negative curvature and
suppose θ is a harmonic 1-form. If F = 0, then Varµ(θ ) has been calculated by A.
Katsuda and T. Sunada in [Ref. 20, Proposition 1.3]. They show that

Varµ(θ ) = 2

h Vol(M)

∫

M
|θ |2

where h is the topological entropy of the geodesic flow of M . For n = 2 and h = 1
(K = −1) we obtain

e′′(0) = 2

Vol(M)

∫

M
|θ |2.

With an appropriate normalization for the L2-norm of θ we recover precisely the
calculation performed in [Ref. 1, Page 687] to compute e′′(0).

It is interesting to see what happens for n = 2 and K = −1 if one adds a
uniform magnetic field. Suppose we take Fx (v) = iv and λ ∈ [0,∞). It is well
known that for 0 ≤ λ < 1, the flow φ0,λF is Anosov and for λ = 1 we obtain
the horocycle flow. Let θ be a harmonic 1-form and for λ ∈ [0, 1) let us try to
compute Varλ,µ(θ ), the variance of θ with respect the flow φ0,λF and the Liouville
measure µ. A direct calculation along the lines in Ref. 1 is possible, but we will
take a different, more economical approach that exploits the good properties of
the variance. It is also well known (see for example Ref. 22) that the flow φ0,λF

is conjugate to the geodesic flow φ0,0, up to a constant time scaling by
√

1 − λ2.
Let f = fλ : SM → SM be this conjugacy and note that it is immediate to check
that f0 is the identity, so f is isotopic to the identity. Since f is a conjugacy:

d f(x,v)(Xλ) = G0,λF( f (x, v)),
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where Xλ = √
1 − λ2 G0,0. Observe that θx (v) = π∗θ (G0,λF)(x, v) and therefore

θ ◦ f (x, v) = π∗θ (G0,λF)( f (x, v)) = π∗θ (d f(x,v)Xλ)

= f ∗π∗θ (Xλ)(x, v).

Hence

Varλ,µ(θ ) = VarXλ,µ(θ ◦ f ) = VarXλ,µ( f ∗π∗θ (Xλ)).

Since θ is closed, f ∗π∗θ is a closed 1-form in SM . Observe that
VarXλ,µ( f ∗π∗θ (Xλ)) only depends on the cohomology class [ f ∗π∗θ ] since the
variance vanishes on coboundaries. We noted before that f is isotopic to the
identity, thus

VarXλ,µ( f ∗π∗θ (Xλ)) = VarXλ,µ(π∗θ (Xλ)) = VarXλ,µ(
√

1 − λ2 θ )

= (1 − λ2) VarXλ,µ(θ ).

From the definition of the variance it follows right away that if F : SM → R is
any function then

VarXλ,µ(F) =
√

1 − λ2 Varµ(F)

which yields

VarXλ,µ( f ∗π∗θ (Xλ)) = (1 − λ2)3/2 Varµ(θ ).

Summarizing

Varλ,µ(θ ) = (1 − λ2)3/2 Varµ(θ ).

Thus we have obtained the following formula for the second derivative of entropy
production in the presence of a uniform magnetic field with intensity λ:

e′′
λ(0) = (1 − λ)3/2 2

Vol(M)

∫

M
|θ |2.

A completely analogous formula can be obtained for compact quotients of
complex hyperbolic space with magnetic field given by the Kähler 2-form.

3. NON-PERTURBATIVE RESULTS

All the results in this section will be based on studying the cohomological
equation using Pestov type identities. The results on the cohomological equation
are all collected in Sec. 4.
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3.1. Axiom A Thermostats

A closed φ-invariant set � is said to be hyperbolic if T (SM) restricted to
� splits as T�(SM) = RGE ⊕ Eu ⊕ Es in such a way that there are constants
C > 0 and 0 < ρ < 1 < η such that for all t > 0 we have

‖dφ−t |Eu ‖ ≤ C η−t and ‖dφt |Es ‖ ≤ C ρ t .

The flow is Axiom A if the nonwandering set � is hyperbolic and the closed orbits
are dense in �. Recall that by the Smale spectral decomposition, � is a finite
union of disjoint basic hyperbolic sets. A hyperbolic basic set is a hyperbolic set
such that:

• the periodic orbits of φ|� are dense in �;
• φ|� is transitive;
• there is an open set U ⊃ � such that ∩t∈Rφt (U ) = �.

The flow φ is Anosov if SM is a hyperbolic set. If φ is Anosov, it is also Axiom A
(but not conversely, of course). Recall that there are examples of Anosov flows for
which � is not the whole space. (9)

Lemma 3.1. Let φ be an Axiom A thermostat and ρ an SRB state. If eρ(φ) = 0,
then φ is a transitive Anosov flow and there exists a smooth solution u of GE (u) =
θ .

Proof: Let � be the basic hyperbolic set on which ρ is supported. Since ρ is an
SRB measure, [Ref. 2, Theorem 5.6] implies that � is an attractor, that is, there
exists an open set U ⊃ � such that � = ∩t≥0φt (U ).

As pointed out in the introduction, if eρ(φ) = 0, then

hρ(φ) =
∑

positive Lyapunov exponents

= −
∑

negative Lyapunov exponents.

Thus ρ is an SRB measure for both φt and φ−t . Consequently, � is an attractor
for both φt and φ−t . This forces � to be open and since it is closed, � = SM and
φ is a transitive Anosov flow.

Let J s
t and J u

t be the stable and unstable Jacobians of φ. If ρ is an SRB measure
for both φt and φ−t then the theory of Gibbs states for transitive Anosov flows
(cf. Ref. 19, Proposition 20.3.10) implies that − d

dt

∣∣
t=0

log J u
t and d

dt

∣∣
t=0

log J s
t

are cohomologous (and the coboundary is the derivative along the flow of a
Hölder continuous function). It follows that φ preserves an absolutely continuous
invariant measure with positive continuous density (and this measure would have
to be ρ). An application of the smooth Livšic theorem [Ref. 21, Corollary 2.1]
shows that φ preserves an absolutely continuous invariant measure with positive
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continuous density if and only if φ preserves a smooth volume form. But if φ

preserves a smooth volume form, then there is a smooth solution u of GE (u) = θ as
desired. �

3.2. Proof of Theorem B

We are required to prove that if eρ(φ) = 0, then E has a global potential. By
[Ref. 37, Theorem 5.1] the condition k < 0 implies that φ is Anosov and hence
Axiom A. By Lemma 3.1, there is a smooth solution u of GE (u) = θ . Theorem 4.4
implies that θ is exact as desired.

3.3. Proof of Theorem C

We will need some preliminaries which can all be found in Ref. 17. Let
L2(SM) be the space of square integrable functions with respect to the Liouville
measure of SM . The space L2(SM) decomposes into an orthogonal direct sum of
subspaces

∑
Hn , n ∈ Z, such that on Hn , −i V is n times the identity operator.

Consider the following first order differential operator:

η− := (G + i H )/2.

The operator η− extends to a densely defined operator from Hn to Hn−1 for all
n. If we let C∞

n (SM) = Hn ∩ C∞(SM), then η− : C∞
n → C∞

n−1 is a first order
elliptic differential operator. The kernel of the elliptic operator η− in C∞

k (SM) is
a finite dimensional vector space which can be identified with Hk . (For all these
properties see Ref. 17.)

Now take q ∈ Hk and let λ := �(q). Then p := V (λ) = �(ikq). Since
η−q = 0, we see right away that G(p) + H V (p)/k = 0 and hence Theorem 4.6
implies that V (λ) is a coboundary iff λ = 0. But V (λ) is the divergence of the
generalized thermostat with respect to � (cf. Ref. 6, Lemma 3.2), so the entropy
production vanishes iff λ = 0 as desired.

4. PESTOV IDENTITY AND COHOMOLOGICAL

EQUATION FOR THERMOSTATS

4.1. Semibasic Tensor Fields

Let π : T M \ {0} → M be the natural projection, and let βr
s M := π∗τ r

s M
denote the bundle of semibasic tensors of degree (r, s), where τ r

s M is the bundle of
tensors of degree (r, s) over M . Sections of the bundles βr

s M are called semibasic
tensor fields and the space of all smooth sections is denoted by C∞(βr

s M). For
such a field T , the coordinate representation

T = (
T i1...ir

j1... js

)
(x, y)
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holds in the domain of a standard local coordinate system (xi , yi ) on T M \ {0}
associated with a local coordinate system (xi ) in M . Under a change of a local
coordinate system, the components of a semibasic tensor field are transformed by
the same formula as those of an ordinary tensor field on M .

Every “ordinary” tensor field on M defines a semibasic tensor field by the rule
T �→ T ◦ π , so that the space of tensor fields on M can be treated as embedded
in the space of semibasic tensor fields.

For a semibasic tensor field (T i1...ir
j1... js

)(x, y), the horizontal derivative is defined
by

T i1...ir
j1... js |k = ∂

∂xk
T i1...ir

j1... js
− �

p
kq yq ∂

∂y p
T i1...ir

j1... js

+
r∑

m=1

�
im
kpT i1...im−1 pim+1...ir

j1... js
−

r∑

m=1

�
p
k jm

T i1...ir
j1... jm−1 pjm+1... js

,

and the vertical derivative by

T i1...ir
j1... js ·k = ∂

∂yk
T i1...ir

j1... js
.

The operators

∇| : C∞(
βr

s M
) → C∞(

βr
s+1 M

)
and ∇· : C∞(

βr
s M

) → C∞(
βr

s+1 M
)

are defined as

(∇|T )i1...ir
j1... js k = ∇|k T i1...ir

j1... js
:= T i1...ir

j1... js |k and (∇·T )i1...ir
j1... js k = ∇·k T i1...ir

j1... js
= T i1...ir

j1... js ·k .

In Refs. 24, 33, the operators ∇| and ∇· were denoted by h
∇ and v

∇ respec-

tively.

4.2. Thermostats and the Modified Horizontal Derivative

Let (M, g) be a closed connected Riemannian manifold. Given a vector field
E on M , define Y ∈ C∞(β1

1 M) by

Y(x,y)(·) = 1

|y|2 (〈y, ·〉Ex − 〈Ex , ·〉y) .

We have seen that the equation

Dγ̇

dt
= Y(γ,γ̇ )(γ̇ ) (8)

defines the Gaussian thermostat on SM .
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Since the flow on SM defined by (8) depends only on the restriction of Y to
SM , we may redefine Y to be

Y(x,y)(·) = 〈y, ·〉Ex − 〈Ex , ·〉y

without changing the flow on SM , so that from now on

Y i
j (x, y) = y j Ei (x) − E j (x)yi .

Given T = (T i1...ir
j1... js

) ∈ C∞(βr
s M), we define the modified horizontal derivative as:

T i1...ir
j1... js :k = T i1...ir

j1... js |k + T i1...ir
j1... js · j Y

j
k ,

so that ∇: : C∞(βr
s M) → C∞(βr

s+1 M).
For convenience, we also define ∇|, ∇·, and ∇ : as

∇|i = gi j∇| j , ∇·i = gi j∇· j , ∇ :i = gi j∇: j .

We also set

XT i1...ir
j1... js

= yk T i1...ir
j1... js :k .

In particular, if u ∈ C∞(T M \ {0}), then

Xu = yi u:i = yi
(
u|i + Y j

i u· j

)
.

Note that X restricted to SM coincides with GE .
It easy to see that if γ satisfies (8), then

(XT )(γ, γ̇ ) = D

dt
(T (γ, γ̇ )).

Straightforward caluculations give:

Y i
j |k = y j Ei

,k − E j,k yi (9)

Y i
j ·k = g jk Ei − E jδ

i
k, (10)

yi
:k = Y i

k = yk Ei − Ek yi , (11)

where (yi ) stands for the semibasic vector field (x, y) �→ (yi ).
For V = (V i ) ∈ C∞(β1

0 M), we set

h
div V := V i

|i ,
v

divV := V i
·i ,

m
divV := V i

:i .

We recall the Gauss–Ostrogradskiı̆ formulas for the horizontal and vertical
divergences (33) (see also Ref. 7, Sec. 4.2, which deals with the case of Finsler
metrics). If V (x, y) is a smooth semibasic vector field positively homogeneous of
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degree λ in y, then
∫

SM

h
divV dµ = 0, (12)

∫

SM

v

divV dµ =
∫

SM
(λ + n − 1)〈V, y〉 dµ, (13)

where dµ is the Liouville measure on SM . Whence we also have
∫

SM

m
divV dµ = (λ + n)

∫

SM
〈E, y〉〈V, y〉 dµ − (λ + 1)

∫

SM
〈V, E〉 dµ, (14)

because
m

divV = V k
:k = V k

|k + V k
·i (yk Ei − Ek yi ) =

h
divV +

v

div(〈V, y〉E) − (λ + 1)〈V, E〉.

4.3. Pestov Identity

Given a function u : SM → R, we will also denote by u its extension to a
positively homogeneous function on T M \ {0} (hoping that this will not yield any
confusion).

We first recall commutation formulas for horizontal and vertical
derivatives (33) (see also Ref. 7, Lemma 4.1, which deals with the case of Finsler
metrics). If u ∈ C∞(T M \ {0}), then

u·l·k − u·k·l = 0, (15)

u|l·k − u·k|l = 0, (16)

u|l|k − u|k|l = Ri
lku·i , (17)

where Ri
lk = y j Ri

jlk and R is the Riemann curvature tensor.
The next lemma is an analog of [Ref. 7, Lemma 4.5].

Lemma 4.1. If u ∈ C∞(T M \ {0}), then

u:l·k − u·k:l = (glk Ei − Elδ
i
k)u·i , (18)

u:l:k − u:k:l = R̃i
lku·i , (19)

with

R̃i
lk = Ri

kl + (
Y i

k|l − Y i
l|k

) + (
Y j

k Y i
l· j − Y j

l Y i
k· j

)
.

Proof: We have

u:l·k = (
u|l + Y i

l u·i
)
·k = u|l·k + Y i

l·ku·i + Y i
l u·i ·k,
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whereas

u·k:l = u·k|l + Y i
l u·k·i .

Thus,

u:l·k − u·k:l = (u|l·k − u·k|l) + Y i
l·ku·i + Y i

l (u·i ·k − u·k·i ).

Using (15), (16), and (10), we come to (18).
Further,

u:l:k = u:l|k + Y j
k u:l· j = (

u|l + Y j
l u· j

)
|k + Y j

k

(
u|l + Y s

l u·s
)
· j

= u|l|k + Y j
l|ku· j + Y j

l u· j |k + Y j
k u|l· j

+ Y j
k Y s

l· j u·s + Y j
k Y s

l u·s· j .

Therefore,

u:l:k − u:k:l = (u|l|k − u|k|l) + (
Y j

l|k − Y j
k|l

)
u· j + Y j

l (u· j |k − u|k· j )

+Y j
k (u|l· j − u· j |l) + (

Y j
k Y s

l· j − Y j
l Y s

k· j

)
u·s + (

Y j
k Y s

l − Y j
l Y s

k

)
u·s· j .

In view of (16), renaming indices and regrouping, we come to (19). �

The next lemma shows a Pestov type identity for thermostats.

Lemma 4.2. If u ∈ C∞(T M \ {0}) is homogeneous of degree 0 in y, then the
following holds on SM :

2〈∇ :u,∇·(Xu)〉 = |∇ :u|2 + X(〈∇·u,∇ :u〉) −
m

div((Xu)∇·u) +
v

div((Xu)∇ :u)

−〈R̃y(∇·u),∇·u〉 − 〈E, y〉〈∇·u,∇ :u〉
− (n − 1)(Xu)〈E,∇·u〉. (20)

Proof: With the above notations, we can write

Xu = yi u:i .

Therefore,

2〈∇·(Xu),∇:u〉 −
v

div((Xu)∇ :u) = 2gi j (Xu)·i u: j − ((Xu)gi j u: j )·i

= gi j (Xu)·i u: j − (Xu)gi j u: j ·i = I − I I.

(21)
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We rewrite the first term on the right-hand side of (21) as follows:

I = gi j (yku:k)·i u: j = gi j (u:i + yku:k·i )u: j

= gi j u:i u: j + gi j yk[u·i :k + (u:k·i − u·i :k)]u: j

= |∇ :u|2 + yk(gi j u·i u: j ):k − yk gi j u·i u: j :k + gi j yk
(
gki Em − Ekδ

m
i

)
u·mu: j .

Next

yk(gi j u·i u: j ):k = X(〈∇·u,∇ :u〉),
yk gi j u·i u: j :k = yk gi j u·i [u:k: j + (u: j :k − u:k: j )]

= gi j u·i (yku:k ): j − gi j u·i yk
: j u:k + yk gi j u·i R̃m

jku·m

= 〈∇·u,∇ :(Xu)〉 + (Xu)〈E,∇·u〉 + 〈R̃y(∇·u),∇·u〉
because

gi j u·i yk
: j u:k = gi j u·i Y k

j u:k = yi u·i Eku:k − Ei u·i yku:k = −(Xu)〈E,∇·u〉,
and

gi j yk
(
gki Em − Ekδ

m
i

)
u·mu: j = y j Emu·mu: j − gi j yk Eku·i u: j

= (Xu)〈E,∇·u〉 − 〈E, y〉〈∇·u,∇ :u〉.
Thus,

I = |∇ :u|2 + X(〈∇·u,∇ :u〉) − 〈∇·u,∇ :(Xu)〉
−〈R̃y(∇·u),∇·u〉 − 〈E, y〉〈∇·u,∇ :u〉. (22)

We rewrite the second term on the right-hand side of (21) as

II = (Xu)gi j u: j ·i = (Xu)gi j [u·i : j + (u: j ·i − u·i : j )]

= [(Xu)gi j u·i ]: j − (Xu): j g
i j u·i + (Xu)gi j

(
g ji Em − E jδ

m
i

)
u·m .

Note that

[(Xu)gi j u·i ]: j =
m

div((Xu)∇·u),

that

(Xu): j g
i j u·i = 〈∇·u,∇ :(Xu)〉,

and that

(Xu)gi j
(
g ji Em − E jδ

m
i

)
u·m = (n − 1)(Xu)〈E,∇·u〉.

Thus,

II =
m

div((Xu)∇·u) − 〈∇·u,∇ :(Xu)〉 + (n − 1)(Xu)〈E,∇·u〉. (23)

Inserting (22)–(23) in (21), we come to (20). �
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Note that for the curvature term in (20) we have, putting Z = ∇·u:

〈R̃y(Z ), Z〉 = 〈Ry(Z ), Z〉 − 〈∇Z E, Z〉 − 〈E, Z〉2. (24)

Indeed,

〈R̃y(Z ), Z〉 = [
Ri

kl + (
Y i

k|l − Y i
l|k

) + (
Y j

k Y i
l· j − Y j

l Y i
k· j

)]
yl Zk Zi

= 〈Ry(Z ), Z〉 + (
yk Ei

,l − Ek,l yi − yl Ei
,k + El,k yi

)
yl Zk Zi

+ [(yk E j − Ek y j )
(
gl j Ei − Elδ

i
j

)

− (yl E j − El y j )
(
gk j Ei − Ekδ

i
j

)]
yl Zk Zi

= 〈Ry(Z ), Z〉 − Ei
,k Zk Zi − Ek Ei Zk Zi ,

where we used the fact that 〈Z , y〉 = 0 by homogeneity.
One more useful identity is:

X(∇·u) = ∇·(Xu) − ∇ :u − 〈E,∇·u〉y + 〈E, y〉∇·u. (25)

Indeed,

X(u·i ) = yk(gi j u· j ):k = yk gi j (u:k· j − (u:k· j − u· j :k))

= gi j (yku:k)· j − gi j u: j − gi j yk
(
gk j Em − Ekδ

m
j

)
u·m,

and since

gi j yk
(
gk j Em − Ekδ

m
j

)
u·m = 〈E,∇·u〉yi − 〈E, y〉u·i ,

we have (25).

4.4. Cohomological Equation

Suppose that the cohomological equation

GE u = ϑ (26)

holds with a smooth function u on SM and a smooth 1-form ϑ on M . Denoting
the homogeneous extension of u to T M \ {0} by u as before, we get

Xu(x, y) = 〈F(x), y〉,
where F is the vector field dual to ϑ with respect to the Riemannian metric.

Integrating (20) against the Liouville measure dµ and using (13), (14) yields

2
∫

SM
〈∇ :u,∇·(Xu)〉 dµ =

∫

SM
{|∇ :u|2 + X(〈∇·u,∇ :u〉) + n(Xu)2

−〈R̃y(∇·u),∇·u〉 − 〈E, y〉〈∇·u,∇ :u〉
− (n − 2)(Xu)〈E,∇·u〉} dµ.
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Note that by (2)
∫

SM
X(〈∇·u,∇ :u〉) dµ = (n − 1)

∫

SM
〈E, y〉〈∇·u,∇ :u〉 dµ.

Therefore,

2
∫

SM
〈∇ :u,∇·(Xu)〉 dµ =

∫

SM

{|∇ :u|2 + n(Xu)2 − 〈R̃y(∇·u),∇·u〉

+ (n − 2)
[〈E, y〉〈∇·u,∇ :u〉 − (Xu)〈E,∇·u〉]} dµ.

(27)

Using (25), we have

〈E, y〉〈∇·u,∇ :u〉 − (Xu)〈E,∇·u〉
= −〈E, y〉〈∇·u, X(∇·u)〉 + 〈E, y〉〈∇·u,∇·(Xu)〉

+ 〈E, y〉2〈∇·u,∇·u〉 − (Xu)〈E,∇·u〉

= −〈E, y〉〈∇·u, X(∇·u)〉 + 〈E, y〉2|∇·u|2 +
v

div {u〈E, y〉∇·(Xu)}

−u〈E,∇·(Xu)〉 − u〈E, y〉
v

div{∇·(Xu)} −
v

div {u(Xu)E} + u〈E,∇·(Xu)〉

= −〈E, y〉〈∇·u, X(∇·u)〉 + 〈E, y〉2|∇·u|2 +
v

div {u〈E, y〉∇·(Xu) − u(Xu)E}

− u〈E, y〉
v

div{∇·(Xu)}.
Plugging this in (27) and again using (13), we derive:

2
∫

SM
〈∇ :u,∇·(Xu)〉 dµ =

∫

SM
{|∇ :u|2 + n(Xu)2 − 〈R̃y(∇·u),∇·u〉

− (n − 2)〈E, y〉〈∇·u, X(∇·u)〉
+ (n − 2)〈E, y〉2|∇·u|2} dµ, (28)

where we used the equality
v

div[∇·(Xu)] =
v

divF = 0.
Since

∫

SM
{|∇·(Xu)|2 − n(Xu)2} dµ =

∫

SM
{|F |2 − n〈F, y〉2} dµ = 0,

we can rewrite (28) as follows, with Z = ∇·u:

2
∫

SM
〈∇ :u, F〉 dµ =

∫

SM
{|∇ :u|2 + |F |2 − (n − 2)〈E, y〉〈X(Z ), Z〉

− 〈R̃y(Z ), Z〉 + (n − 2)〈E, y〉2|Z |2} dµ,
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or
∫

SM
{|F − ∇ :u|2 − (n − 2)〈E, y〉〈X(Z ), Z〉

−〈R̃y(Z ), Z〉 + (n − 2)〈E, y〉2|Z |2} dµ = 0. (29)

From (25), we obtain

〈X(Z ), Z〉 = 〈F − ∇ :u, Z〉 + 〈E, y〉|Z |2.
Fixing any real parameter α, we now rewrite (29) as follows:

∫

SM
{|F − ∇ :u|2 − 2α〈E, y〉〈F − ∇ :u, Z〉 − (n − 2 − 2α)〈E, y〉〈X(Z ), Z〉

−〈R̃y(Z ), Z〉 + (n − 2 − 2α)〈E, y〉2|Z |2} dµ = 0,

or
∫

SM
{|F − ∇ :u − α〈E, y〉Z |2 − (n − 2 − 2α)〈E, y〉〈X(Z ), Z〉

−〈R̃y(Z ), Z〉 + (n − 2 − 2α − α2)〈E, y〉2|Z |2} dµ = 0. (30)

Notice that

2〈E, y〉〈X(Z ), Z〉 = X(〈E, y〉|Z |2) − X(〈E, y〉)|Z |2.
A direct calculation gives

X(〈E, y〉) = 〈∇y E, y〉 + |E |2 − 〈E, y〉2,

whence

2〈E, y〉〈X(Z ), Z〉 = X(〈E, y〉|Z |2) − (〈∇y E, y〉 + |E |2 − 〈E, y〉2)|Z |2,
and therefore

2
∫

SM
〈E, y〉〈X(Z ), Z〉 dµ =

∫

SM
X(〈E, y〉|Z |2) dµ

−
∫

SM
(〈∇y E, y〉 + |E |2 − 〈E, y〉2)|Z |2 dµ

=
∫

SM
{n〈E, y〉2|Z |2 − 〈∇y E, y〉 − |E |2} dµ.
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Plugging this in (30), we get

∫

SM

{
|F − ∇ :u − α〈E, y〉Z |2 + n − 2 − 2α

2
[〈∇y E, y〉 + |E |2]

−〈R̃y(Z ), Z〉 −
[(

n − 2 − 2α

2

)2

+
(

n − 2

2

)2
]

〈E, y〉2|Z |2
}

dµ = 0.

Changing n−2−2α
2 �→ α and using (24), we deduce:

∫

SM
{|F − ∇ :u − (n/2 − 1 − α)〈E, y〉Z |2

+α[〈∇y E, y〉 + |E |2] − 〈Ry(Z ), Z〉 + 〈∇Z E, Z〉 + 〈E, Z〉2

− [α2 + (n/2 − 1)2]〈E, y〉2|Z |2} dµ = 0. (31)

So, if

K (σξ,η) − 〈∇ξ E, ξ 〉 − α〈∇η E, η〉 − α|E |2 − 〈E, ξ 〉2

+ [α2 + (n/2 − 1)2]〈E, η〉2 < 0

for every x ∈ M and every pair of orthogonal unit vectors ξ, η ∈ Tx M , then Z = 0.
This means that u is a lift to SM of a function ϕ on M , u(x, y) = ϕ(x), and the
cohomological equation implies: ϑ = dϕ. Choosing α = 1 and putting

k1(σ ) = K (σ ) − divσ E − |E |2 + [1 + (n/2 − 1)2]|Eσ |2,

= Kw(σ ) +
(n

2
− 1

)2
|Eσ |2,

we arrive at the following:

Theorem 4.3. Suppose k1 < 0 and GE (u) = ϑ . Then ϑ is exact.

It is interesting to notice that for n = 2, k1 = K − div E = Kw, and that for
n = 3, k1 equals k of (5).

4.5. Using the Invariant Measure

The measure f µ is invariant if GE (log f ) = (n − 1)θ . We let u = log f , so
that

GE (u) = (n − 1)θ (32)

and ν = euµ is a flow invariant measure.
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Let V (x, y) be a smooth semibasic vector field positively homogeneous of
degree λ in y. Since

eu
v

divV = eu V i
·i =

v

div(eu V ) − 〈V,∇·u〉eu,

we have by (13)
∫

SM

v

divV dν =
∫

SM
{(λ + n − 1)〈V, y〉 − 〈V,∇·u〉} dν, (33)

and, since

eu
m

divV = eu V i
:i =

m
div(eu V ) − 〈V,∇ :u〉eu,

we have by (14)
∫

SM

m
divV dν =

∫

SM
{(λ + n)〈E, y〉〈V, y〉 − (λ + 1)〈V, E〉 dν − 〈V,∇ :u〉} dν.

(34)
Let us integrate (20) against dν. Using the flow invariance of ν together with

(33) and (34) yields:

2
∫

SM
〈∇ :u,∇·(Xu)〉 dν =

∫

SM
{|∇ :u|2 + n(Xu)2 − (n − 2)(Xu)〈E,∇·u〉

−〈E, y〉〈∇·u,∇ :u〉 − 〈R̃y(∇·u),∇·u〉} dν. (35)

We have

n

∫

SM
(Xu)2 dν = n(n − 1)2

∫

SM
〈E, y〉2eu dµ

= (n − 1)2n

∫

SM
〈E, y〉(eu〈E, y〉) dµ

= (n − 1)2
∫

SM

v

div(eu〈E, y〉E) dµ

= (n − 1)2
∫

SM
(〈E, y〉〈∇·u, E〉 + |E |2) dν.

Plugging this, (24) and (32) in (35), we have, with Z = ∇·u:

2(n − 1)
∫

SM
〈∇ :u, E〉 dν =

∫

SM
{|∇ :u|2 + (n − 1)θ〈E, Z〉 + (n − 1)2|E |2

− θ〈Z ,∇ :u〉 − 〈Ry(Z ), Z〉 + 〈∇Z E, Z〉
+ 〈E, Z〉2} dν = 0,
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or
∫

SM

{
|∇ :u − (n − 1)E − (1/2)θ Z |2 − 1

4
θ2|Z |2

−〈Ry(Z ), Z〉 + 〈∇Z E, Z〉 + 〈E, Z〉2

}
dν = 0. (36)

So, if

K (σξ,η) − 〈∇ξ E, ξ 〉 − 〈E, ξ 〉2 + 1

4
〈E, η〉2 < 0

for every x ∈ M and every pair of orthogonal unit vectors ξ, η ∈ Tx M , then Z = 0.
Passing by we note that this condition also implies that φ is Anosov by [Ref. 36,
Theorem 4.1].

Using (25), we have

X(Z ) = (n − 1)E − ∇ :u − 〈E, Z〉y + θ Z . (37)

Then we can rewrite (36) as
∫

SM

{
|X(Z ) + 〈E, Z〉y − (1/2)θ Z |2 − 1

4
θ2|Z |2

−〈Ry(Z ), Z〉 + 〈∇Z E, Z〉 + 〈E, Z〉2

}
dν = 0

or
∫

SM

{
|X(Z ) + 〈E, Z〉y + (1/2)θ Z |2 − 2θ〈X(Z ), Z〉 − 1

4
θ2|Z |2

−〈Ry(Z ), Z〉 + 〈∇Z E, Z〉 + 〈E, Z〉2

}
dν = 0

or, using

2θ〈X(Z ), Z〉 = X(θ |Z |2) − |Z |2Xθ = X(θ |Z |2) − (〈∇y E, y〉 + |E |2 − θ2)|Z |2,
as

∫

SM

{
|X(Z ) + 〈E, Z〉y + (1/2)θ Z |2

−〈Ry(Z ), Z〉 + 〈∇Z E, Z〉 + 〈∇y E, y〉|Z |2 + |E |2|Z |2

−〈E, Z〉2 − 5

4
θ2|Z |2

}
dν = 0. (38)
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Recall that

k(σ ) = K (σ ) − divσ E − |E |2 + 5

4
|Eσ |2.

Hence if k(σ ) < 0 for every x and every two-plane σ ∈ Tx M , (38) implies Z = 0
and hence we obtain:

Theorem 4.4. Suppose k < 0 and GE (u) = θ . Then θ is exact.

To complete these results we now show that if the thermostat is transitive and
the inequality k(σ ) ≤ 0 holds for all σ , then Z = 0. Indeed, in this case

K (σ ) − divσ E − |E |2 + 5

4
〈E, η〉2 < 0

unless 〈E, ξ 〉 = 0, where {η, ξ} is an orthonormal basis of σ .
Then (38) yields

〈E, Z〉 = 0

and

XZ + 〈E, Z〉y + (1/2)θ Z = 0.

Then

XZ = −1

2
θ Z ,

yielding

X(|Z |2) = −θ |Z |2.
Assuming the set {Z �= 0} to be nonempty, we obtain on this set

X(log |Z |2) = −θ = −(Xu)/(n − 1).

Consider this equation on a dense orbit. Then

|Z |2 = Ce−u/(n−1)

on every connected component of the intersection of this orbit with the set {Z �= 0},
with some nonzero constant C depending on the component. Such a component is
obviously open in this orbit. At the same time, it is closed as the right hand side of
the above equality is separated from zero. This means that the whole orbit is in the
set {Z �= 0} and so the above holds on this orbit with the same nonzero constant,
which means that |Z | is separated from zero on a dense orbit, and consequently it
is nonzero everywhere. We now show that this is not possible.

Recall that ∇·u := (u·i ) where u·i := gi j u· j and u· j := ∂u
∂y j . Fix x0 ∈ M and

consider the restriction ũ of u to Sx M . Since Sx M is compact there is y0 ∈
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Sx M for which dy0 ũ = 0. Since u is homogeneous of degree zero we must have
∇·u(x0, y0) = 0.

Thus Z = ∇·u = 0 everywhere in SM .

Summarizing, we have proved:

Theorem 4.5. Let φ be a transitive Gaussian thermostat with k ≤ 0. Then φ

preserves a smooth volume form if and only if E has a global potential.

4.6. Cohomological Equation for Generalized

Thermostats on Surfaces

Consider the thermostat φ determined by an arbitrary function λ ∈ C∞(SM)
and let Gλ be its infinitesimal generator.

Theorem 4.6. Let p ∈ C∞(SM) be such that G(p) + H V (p)/k = 0 for some
positive integer k, and suppose

K − H (λ) + λ2[(k + 1)2/(2k + 1)] ≤ 0.

Then there exists u ∈ C∞(SM) such that Gλ(u) = p if and only if p = 0.

Proof: Note that Gλ = G + λV . We will use the following Pestov type integral
identity proved in [Ref. 6, Equation (13)]. Given u ∈ C∞(SM) we have:

2
∫

SM
Hu V Gλu dµ =

∫

SM
(Gλu)2 dµ +

∫

SM
(Hu)2 dµ (39)

−
∫

SM
(K − H (λ) + λ2)(V u)2 dµ.

Using that G(p) + H V (p)/k = 0 and that H and G preserve the Liouville mea-
sure we obtain:

∫

SM
Hu V (p) dµ = −

∫

SM
u H V (p) dµ

= k

∫

SM
u G(p) dµ = −k

∫

SM
G(u) p dµ.

Since G(u) = p − λV (u) we derive
∫

SM
Hu V Gλu dµ = −k

∫

SM
p2 dµ + k

∫

SM
λ V (u) p dµ.
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Combining the last equality with (39) yields

(2k + 1)
∫

SM
p2 dµ − 2k

∫

SM
λV (u) p dµ +

∫

SM
(Hu)2 dµ

−
∫

SM
(K − H (λ) + λ2)(V u)2 dµ = 0.

We may rewrite this equality as:
∫

SM

(√
2k + 1 p − kλ V (u)√

2k + 1

)2

dµ

−
∫

SM

(
K − H (λ) + λ2 (k + 1)2

2k + 1

)
(V (u))2 dµ +

∫

SM
(Hu)2 dµ = 0.

Combining this equality with the hypotheses we obtain Hu = 0. Note that

K − H (λ) + λ2 ≤ K − H (λ) + λ2[(k + 1)2/(2k + 1)] ≤ 0.

Using Hu = 0 in (39) we obtain Gλ(u) = p = 0.
�

Remark 4.7. If p(x, v) = qx (v, . . . , v) where q is a symmetric k-tensor, then
the condition G(p) + H V (p)/k = 0 is just saying that q has zero divergence. For
such a p and k = 1 it suffices to assume that φ is Anosov. (6) It is unknown if the
Anosov hypothesis is enough for k ≥ 2. The problem is open even for geodesic
flows. We refer to (34) for partial results in this direction when k = 2.

5. FINAL REMARKS AND OPEN PROBLEMS

We begin with the following basic open problem (also raised by Wojtkowski
in Ref. 37):

Let φ be an Anosov Gaussian thermostat on a closed n-manifold with n ≥ 3.
Is it true that φ is transitive?

When n = 2, a result of Ghys(16) ensures that φ is topologically conjugate
to the geodesic flow of a metric of constant negative curvature and thus φ is
transitive. If the weak stable and unstable bundles of φ are transversal to the
vertical subspace and M supports an Anosov geodesic flow, then a related result
in Ref. 16 also shows that φ is transitive. Recall that the vertical subspace V at
(x, v) ∈ SM is the kernel of dπ(x,v) : T(x,v)SM → Tx M . Thus it is natural to ask:

Let φ be an Anosov Gaussian thermostat on a closed n-manifold with n ≥ 3.
Are the weak stable and unstable bundles of φ always transversal to V?
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For n = 2 this is proved in Ref. 16 but the proof requires to know apriori that
φ is transitive, so both questions are intimately related.

We now make the following useful observation.

Proposition 5.1. Let φ be a transitive Anosov thermostat on a closed manifold.
Then φ is homologically full, that is, every homology class in H1(SM, Z) contains
a closed orbit of φ. In particular φ is weak-mixing.

Proof: We would like to use Theorem 1 in Ref. 35 which gives several equivalent
conditions for a transitive Anosov flow to be homologically full. They all imply
that φ is weak-mixing. The one that we will use is the existence of a Gibbs state µ

with zero asymptotic cycle �µ. As a Gibbs state we take the measure m of maximal
entropy. Since an Anosov thermostat is reversible via the flip f (x, v) = (x,−v)
and the measure of maximal entropy is unique, we see that f∗m = m.

An easy argument with the Gysin sequence of the sphere bundle π : SM →
M shows that π∗ : H 1(M, R) → H 1(SM, R) is an isomorphism, so given c ∈
H 1(SM, R) let us write c = [π∗ω] where ω is a closed 1-form in M . Since
π∗ω(GE ) = ω we have:

�m(c) =
∫

SM
ω dm.

But f∗m = m and ω ◦ f = −ω, hence �m(c) = 0 for all c. �

If the 1-form θ dual to E is closed (but not exact) the results in Ref. 38 assert
that φ is conformally symplectic and that the weak stable and unstable bundles
are Lagrangian subspaces. In this case one can consider the action of dφ on the
bundle of Lagrangian subspaces and using the Maslov cycle, Proposition 5.1 and
arguments similar to those in [Ref. 23, Chapter 2 and Ref. 6], one can show that
V is transversal to the weak bundles. (Details of this will appear elsewhere.) Of
course, in this case we already know that the entropy production is positive, but
the transversality property may be of help in understanding the cohomological
equation in general.

Besides transitivity and transversality of the weak bundles with V , we may
also ask:

Let φ be a transitive Anosov thermostat on a closed n-manifold M with n ≥ 3.
Let ϑ be a smooth 1-form on M. Suppose u is a smooth solution of

GE (u) = ϑ.

Is it true that ϑ is exact?

For n = 2 this is proved in Ref. 6 and Theorem 4.3 provides an affirmative
answer under certain curvature condition.
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